3.349 \(\int \frac{\cos ^4(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx\)

Optimal. Leaf size=168 \[ \frac{(a+b) (2 a+3 b) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (e+f x\left |-\frac{b}{a}\right .\right )}{3 b^2 f \sqrt{a+b \sin ^2(e+f x)}}-\frac{2 (a+2 b) \sqrt{a+b \sin ^2(e+f x)} E\left (e+f x\left |-\frac{b}{a}\right .\right )}{3 b^2 f \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}-\frac{\sin (e+f x) \cos (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b f} \]

[Out]

-(Cos[e + f*x]*Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*b*f) - (2*(a + 2*b)*EllipticE[e + f*x, -(b/a)]*Sqrt
[a + b*Sin[e + f*x]^2])/(3*b^2*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) + ((a + b)*(2*a + 3*b)*EllipticF[e + f*x, -(b
/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(3*b^2*f*Sqrt[a + b*Sin[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.194184, antiderivative size = 208, normalized size of antiderivative = 1.24, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {3192, 416, 524, 426, 424, 421, 419} \[ \frac{(a+b) (2 a+3 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 b^2 f \sqrt{a+b \sin ^2(e+f x)}}-\frac{2 (a+2 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 b^2 f \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}-\frac{\sin (e+f x) \cos (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b f} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^4/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-(Cos[e + f*x]*Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*b*f) - (2*(a + 2*b)*Sqrt[Cos[e + f*x]^2]*EllipticE[
ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*b^2*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]
) + ((a + b)*(2*a + 3*b)*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b
*Sin[e + f*x]^2)/a])/(3*b^2*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 3192

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(1 - ff^2*x^2)^((m - 1)/2
)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ
[p]

Rule 416

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^(q - 1))/(b*(n*(p + q) + 1)), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\cos ^4(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx &=\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\left (1-x^2\right )^{3/2}}{\sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b f}+\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{a+3 b-2 (a+2 b) x^2}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 b f}\\ &=-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b f}-\frac{\left (2 (a+2 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^2 f}+\frac{\left ((a+b) (2 a+3 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^2 f}\\ &=-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b f}-\frac{\left (2 (a+2 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{b x^2}{a}}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^2 f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}+\frac{\left ((a+b) (2 a+3 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{3 b^2 f \sqrt{a+b \sin ^2(e+f x)}}\\ &=-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b f}-\frac{2 (a+2 b) \sqrt{\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b^2 f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}+\frac{(a+b) (2 a+3 b) \sqrt{\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}{3 b^2 f \sqrt{a+b \sin ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.85441, size = 170, normalized size = 1.01 \[ \frac{2 \sqrt{2} \left (2 a^2+5 a b+3 b^2\right ) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} F\left (e+f x\left |-\frac{b}{a}\right .\right )+b \sin (2 (e+f x)) (-2 a+b \cos (2 (e+f x))-b)-4 \sqrt{2} a (a+2 b) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} E\left (e+f x\left |-\frac{b}{a}\right .\right )}{6 \sqrt{2} b^2 f \sqrt{2 a-b \cos (2 (e+f x))+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^4/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(-4*Sqrt[2]*a*(a + 2*b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] + 2*Sqrt[2]*(2*a^2 +
 5*a*b + 3*b^2)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + b*(-2*a - b + b*Cos[2*(e +
 f*x)])*Sin[2*(e + f*x)])/(6*Sqrt[2]*b^2*f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]  time = 1.154, size = 316, normalized size = 1.9 \begin{align*}{\frac{1}{3\,{b}^{2}\cos \left ( fx+e \right ) f} \left ( \left ( \sin \left ( fx+e \right ) \right ) ^{5}{b}^{2}+2\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ){a}^{2}+5\,a\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) b+3\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ){b}^{2}-2\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ){a}^{2}-4\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) ab+ \left ( \sin \left ( fx+e \right ) \right ) ^{3}ab- \left ( \sin \left ( fx+e \right ) \right ) ^{3}{b}^{2}-\sin \left ( fx+e \right ) ab \right ){\frac{1}{\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x)

[Out]

1/3*(sin(f*x+e)^5*b^2+2*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))
*a^2+5*a*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b+3*(cos(f*x+e
)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b^2-2*(cos(f*x+e)^2)^(1/2)*((a+b*
sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a^2-4*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^
(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a*b+sin(f*x+e)^3*a*b-sin(f*x+e)^3*b^2-sin(f*x+e)*a*b)/b^2/cos(f*x+e
)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{4}}{\sqrt{b \sin \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^4/sqrt(b*sin(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \cos \left (f x + e\right )^{4}}{b \cos \left (f x + e\right )^{2} - a - b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-b*cos(f*x + e)^2 + a + b)*cos(f*x + e)^4/(b*cos(f*x + e)^2 - a - b), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**4/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{4}}{\sqrt{b \sin \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(cos(f*x + e)^4/sqrt(b*sin(f*x + e)^2 + a), x)